Protection from cerebral ischemia by brain cooling without reduced lactate accumulation in dogs.
نویسندگان
چکیده
Hypothermia protects tissue function in ischemia. This study determined if selective brain cooling inhibits cerebral cortical lactate accumulation and thus accounts for imporved neurologic outcome after complete cerebral ischemia in dogs. The brain was selectively cooled (hippocampal temperature 33 degrees C) by nasal lavage with water at 5 degrees C. Control dogs received nasal lavage with water at 39 degrees C. Mean +/- SEM rectal temperature in both groups was 39 +/- 1 degree C prior to ischemia. Selective brain cooling before and during 10 minutes of cardiac arrest was associated with significantly improved neurologic function and 100% survival, whereas normothermic cardiac arrest produced marked neurologic dysfunction and 100% mortality. Cerebral cortical lactate accumulation was measured in a complementary series of dogs exposed to the same two treatments but with the addition of six cerebral cortical brain biopsies taken before, during, and immediately after cardiac arrest. Brain and rectal temperatures of dogs in the brain biopsy protocol were similar to those of dogs in the recovery protocol. There was no difference detected in cerebral lactate accumulation during ischemia between brain-cooled and control dogs. Thus, reduction in cortical brain lactate during ischemia cannot account for the postischemic functional protection afforded by preischemic selective brain cooling.
منابع مشابه
Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia
Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy,...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملEffect of brain cooling on brain ischemia and damage markers after fluid percussion brain injury in rats.
Although systemic cooling had recently been reported as effective in improving the neurological outcome after traumatic brain injury, several problems are associated with whole-body cooling. The present study was conducted to test the effectiveness of brain cooling without interference with the core temperature in rats after fluid percussion traumatic brain injury (TBI). Brain dialysates ischem...
متن کاملCandesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملNeuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats
Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 20 6 شماره
صفحات -
تاریخ انتشار 1989